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The Adler-Kostant-Symes R-bracket scheme is applied to the algebra of pseudodifferential operators to relate the three inte- 
grable hierarchies: KP and its two modifications, known as non-standard integrable models. All three hierarchies are shown to be 
equivalent and a connection is established in the form of a symplectic gauge transformation. This construction results in a new 
representation of the W-infinity algebras in terms of four boson fields. 

1. I n t r o d u c t i o n  

One o f  the impor tan t  and  still unsolved problems of  two-dimensional  physics is to describe consistently sys- 
tems with infini tely many  funct ional  ( f ie ld)  degrees of  freedom. Among such systems the largest a t tent ion was 
a t ta ined by the Kadomtsev-Pe tv ia shv i l i  ( K P )  complete ly  integrable hierarchy, which proved to be relevant  for 
a variety o f  physical  problems.  A recent and  intr iguing deve lopment  in this field is the appearance  of  integrable 
hierarchies,  including KP, in the matr ix  models  known to describe, at mult icr i t ical  points,  c~< 1 mat ter  systems 
coupled to D = 2 quan tum gravity [ 1 ]. In  part icular ,  the par t i t ion  funct ion o f  both  discrete matr ix-models  [ 2,3 ] 
and  o f  con t inuum c~< 1 string field theory [4,5 ] is expressed in terms of  a const ra ined z-function of  the KP 
hierarchy. The coupling constants  in the matr ix  model  par t i t ion  function, corresponding to various possible 
devia t ions  f rom the cri t ical  points,  are the evolut ion parameters  in the KP hierarchy. 

The most  essential  feature o f  the integrable hierarchies with an infini te number  of  degrees of  freedom, which 
p rompts  their  connect ion to 2D conformal  field theories,  c~< 1 strings and their  matr ix  model  counterparts ,  is 
their  hami l ton ian  structure [6,7] .  Thus, the Virasoro algebra provides  the second hami l ton ian  structure o f  the 
Kor teweg-de  Vries ( K d V )  hierarchy. This is the algebra o f  constraints  on the par t i t ion  function o f  the one- 
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matrix model [ 1 ]. In the same way the WN algebras [ 8 ], or more precisely, their semiclassical analogue - the 
Gelfand-Dickey algebras [ 9 ], give the second hamiltonian structures of the generalized KdV hierarchies. The 
Wu are the algebras of constraints on the partition function in multi-matrix and Kontsevich matrix models 
[ 2,3]. Finally, the W I +~ algebra [ 10], which is isomorphic to the Lie algebra of differential operators on the 
circle ~(9~ ($1) [ 11 ], yields the first hamiltonian structure of the KP hierarchy [ 12-14 ]. 

An important open problem of the matrix model formulation of 2D quantum gravity is how to describe the 
interpolation between two different vacua (one, characterized by (p, q) conformal matter, and another one, by 
(p', q'), p' v~ p, q' v~ q). It is known [ 15 ] that this cannot be solved in terms of the ordinary KP evolution param- 
eters. A hope to solve this problem is to analyse all integrable hierarchies which are equivalent to KP. This is 
also an interesting mathematical problem by its own. 

In this letter we would like to contribute to this program. The powerful Adler-Kostant-Symes (AKS) scheme 
for Lie-algebraic construction of integrable models (substantially improved and extended by Reyman and 
Semenov-Tian-Shansky) [ 16 ] is applied to the algebra of pseudo-differential operators on the circle ~ ( ~ ( S  1 ) 
[ 17 ]. This scheme permits the treatment of the three different integrable KP-like hierarchies: ordinary KP and 
its two modifications, known as non-standard integrable models [ 13 ], on an equal footing. They correspond to 
the three possible splittings of the algebra • ~(9(S 1 ) into a linear sum of two subalgebras. The main result in that 
all three hierarchies are proved to be "gauge" equivalent via a generalized Miura transformation. The (field- 
dependent) "gauge" transformations, which are explicitly constructed, belong to well-defined subgroups of the 
formal group of pseudo-differential operators - the abelian group of operators of multiplication by a function 
and the group of diffeomorphisms on the circle (Virasoro group), respectively. For the first of the modified KP 
hierarchies, this "gauge" equivalence was previously established [ 18 ] in the "semiclassical" limit of KP (known 
in non-linear hydrodynamics as the Benney integrable hierarchy [ 19 ] ). 

As an important by-product, the above "gauge" transformations together with the AKS R-bracket scheme 
provide new explicit realizations of W~ +oo algebras in terms of an unconventional set of four boson fields. 

2. The Adler-Kostant-Symes scheme and applications to KP hierarchies 

2.1. General scheme and R operators 

It is well known that the Lie algebra methods allow for a unifying treatment ofintegrable systems [6]. One of 
the main purposes of this paper is to describe a relation between the Lax formulation of various KP-type systems 
defined below and the R-operator approach [ 20,21 ] to the integrable systems based on the AKS scheme [ 16 ]. 
We first recall the notion of integrability. 

Complete integrability. Consider a hamiltonian system with n degrees of freedom possessing standard hamil- 
tonian structure with a hamiltonian H(p, q) and Poisson bracket {, }. A hamiltonian system is called completely 
(or Liouville) integrable if it has n conserved quantities (integrals of motion) Ik(p, q), k= l, ..., n, which are in 
involution: {/,, Ij) -- 0. For such a system we can find the action-angle variables and write the general solution to 
the equations of motion. 

Lax formulation. For infinite-dimensional integrable hamiltonian systems, there exists the convenient Lax 
(or "zero-curvature") formulation [6 ]. In the Lax formulation the dynamical equations of motion can be writ- 
ten in terms of a Lax pair L, P, with values in some Lie algebra (q, as the Lax-type equation 

d LL = [L, P ] .  (1) 
dt 

The Lax formulation leads straightforwardly to the construction of the integrals of motion. Namely, for any Ad- 
invariant function I on ~, I ( L )  is a constant of motion. In fact, it can be shown that any completely integrable 
hamiltonian system admits a Lax representation (at least locally) [22]. 
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The KP hierarchy. An important example of integrable systems admitting the Lax formulation is given by the 
KP hierarchy consisting of the following family of Lax equations: 

0L 
Ot--~=[L,U+], r-- 1, 2, 3 . . . . .  (2) 

where L is a pseudo-differential operator 

L = D +  ~ ui D-i. (3) 
i=l  

The subscript ( + )  means taking the purely differential part of L r and t=  {t~} are the evolution parameters 
(infinitely many time coordinates). The flows (2) are bi-hamiltonian [ 7 ], i.e. there exist two Poisson bracket 
structures {, } ~,2, such that we can rewrite (2) as 

0L 
0t---~ = {H~, L}2 = {H~+ ~, L)~. (4) 

Here the hamiltonians for the KP hierarchy are H~ = r -  1 f Res L r (Res denotes the coefficient in front of  D -  ~ ). 
The second equality in (4) is a particular case of the so-called Lenard relations {H~+ ~, L}m = {H, L}m+~ for a 
hierarchy of Poisson bracket structures m =  l, 2, .... There exists a fundamental theorem (see e.g. ref. [23])  
connecting the notion of integrability with the property of possessing a bi-hamiltonian structure, which estab- 
lishes the KP system as integrable. 

The AKS scheme. A very wide class of integrable models can be constructed through the application of the 
AKS method having roots in the coadjoint orbit formulation. 

Let G denote a Lie group and ~ be its Lie algebra. G acts on (¢ by the adjoint action: Ad(g)X=gXg-~, with 
ge G and Xe ~. Let ~* be the dual space of (¢ relative to a non-degenerate bilinear form ( I ) on ~¢* × ~¢. The 
corresponding coadjoint action of ~¢ on ~* is obtained from the duality of ( I ): (Ad*(g)UIX)= 
( U] Ad (g-~ )X) .  We will denote the infinitesimal versions of adjoint and coadjoint transformations by ad(Y) 
and ad*(Y) (for g =  exp(Y) ). 

There exists a natural Poisson structure on the space C~(  ~¢*, ~)  of smooth, real-valued functions on ~*, called 
the Lie-Poisson (LP) bracket. The LP bracket for F, H e C  ~ ( ~¢*, R) is given by 

{F, H} (U) = - ( U] [VF(U), VH(U) ] ) ,  (5) 

where the gradient VF: if*-. (¢ is defined by the standard formula (d/dt)F( U+tV) lt=o= (V] VF(U) ) and 
where [ ,  ] is the standard Lie bracket on (¢. It follows clearly that {, ) is antisymmetric and it is also easy to 
verify the Jacobi identity. On each orbit in if* the LP bracket gives rise to a non-degenerate symplectic structure. 
Moreover, for any hamiltonian H on such an orbit we have a hamiltonian equation d U/dt = ad*(VH(U) ) U. 

We now introduce the R-operator (generalized R-matrix) as a linear map from a Lie algebra ff to itself such 
that the bracket 

[X, YIR=--½[RX, Y]+½[X, RY] (6) 

defines a second Lie structure on ff [ 20 ]. The modified Yang-Baxter equation (YBE) for the R-matrix must 
hold in order to ensure the Jacobi relation. 

We can furthermore introduce a new LP bracket {, }R called R-bracket by substituting the usual Lie bracket 
[ , ] for the R-Lie bracket [ , ]R (6) in (5): 

{F, H}R(U) = - < UI [VF(U), VH(U) ]R ) • (7) 

A function H on if* is called Ad*-invariant (Casimir) if H[Ad*(g)U]=H[U] or, infinitesimally, 
ad*(VH(U) ) (U)  = 0  for each U~ if*. Then one can show [20] that (1) the ad*-invariant functions are in 

169 



Volume 294, number 2 PHYSICS LETTERS B 12 November 1992 

involution with respect to both brackets ( 5 ) and (7); (2) the hamiltonian equation on f¢* takes the following 
(generalized Lax) form: 

dU/dt= ~ ad*(R (VH(U) ) ) U, (8) 

corresponding to the equations of motion dF/dt= (H, F}R for F~C ~ ( ~*, ~). 
Hence the above R-matrix technique leads to a direct construction of integrable systems based on Casimir 

functions on fa*. The basic realization of this technique arises when the Lie algebra fa decomposes as a vector 
space into two subalgebras fa+ and fa_, i.e. fa= fa+ ® fa_. Let P_+ be the corresponding projections on fax. Then 
R = P+ - P_ satisfies the modified YBE and provides a specific realization for the above scheme. 

2.2. AKS construction of three KP hierarchies 

Here we will illustrate the AKS construction on fa=qJ~(9(S ] ) - the Lie algebra of pseudo-differential opera- 
tors on a circle. Recall that an arbitrary pseudo-differential operator X(x, Dx) = ~k~ -ooXk(x)D k is conveniently 
represented by its symbol [ 17 ] - a Laurent series in the variable ~: 

X(~,x)= ~ Xk(X)~ k, (9) 
k~> --oo 

and the operator multiplication corresponds to the following symbol multiplication: 

X(~,x)oY(~,x)= ~. h u l  oNxONy (10) 
N>-O • O~ N Ox'N' 

which determines a Lie algebra structure given by a commutator IX, Y] -- ( 1/h) (Xo Y-  YoX). Explicitly we 
have 

1 (oNX oNY oNx oNy~ 
[X(~,x),Y(~,x)]=N~>~ ~ (h)N-I ~.. ~0--- ~ ON N ~xN-~]  • (11) 

The constant h appearing in (10) and ( 11 ) has the meaning of a deformation parameter and will henceforth be 
taken as h= 1. The limit h ~ 0  defines the semiclassical limit of ~F~(9(S ~ ), where the Lie bracket ( 11 ) reduces to 
a two-dimensional Poisson bracket: [X(~, x),  Y(~, x) ] = (OX/O~) (OY/Ox) - (OX/Ox) (OY/O~). 

Using the Adler trace one next defines an invariant, non-degenerate bilinear form: 

<LIX> =TrA(LX) = f dx Res~ L(~, x)oX(~, x),  (12) 

which allows an identification of the dual space fa* with fa and of the coadjoint action with the adjoint action. 
There exist three natural decompositions of fa into a linear sum of two subalgebras: 

fat+={X+=_X>.t= ~tXt(x)~i}, fat_={X_-X<t= =~+ X_i(x)~-i}, (13) 

labelled by the index l taking three values l= 0, 1, 2. For each l we clearly have fa= fat+ ® fat_. Correspondingly 
the dual spaces to subalgebras fat_+ are given by 

fa~=( t - ~ z < - l =  i=/+l  ~ ~-ioU-i(X)} ' fal*-'=( t+ =='t>~-l= i=-l~ 'i°Ui(X'} " ( 1 4 )  

Note that in (14) the differential operators are put to the left. 
Defining Rt= P+ - P _  for each of the three cases one finds that the R-bracket is given by 
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[X, Y]R,= [X>~t, Y>~t]- [S<t, Y<t]. (15) 

Furthermore, from the general relation for the R-coadjoint action of (¢ on its dual space ad~ ( X ) L =  
½ ad*(RX)L+ ½R*ad*(X)L we find that the infinitesimal shift along an R-coadjoint orbit O(Rt) has the form 

6R,L-ad~,(X)L= [ a d * ( X + ) L  ] _ - [ad*(X_)L+ ] + --- [X~t, L<_t] < - l -  [X<t, L~_t]  >t-1. (16) 

Henceforth, the subscripts + will denote projections on (9l_+ and f~T~, as in (13), (14). Also, we shall skip the 
sign o in symbol products for brevity. 

We will now discuss in greater detail the hamiltonian structure of  the integrable systems given by the three 
decompositions labelled by l=0,  1, 2 as defined by the AKS scheme with the hamiltonian equations of  motion 
(8). We will call the resulting hierarchies the KPt hierarchies. 

- KPt=o: Here we take the R-coadjoint orbit of the form O (Ro) = {L = ~+L_  = ~+ ~ = 1  ~-kuk(X) }. Choosing as 
a Casimir the function Hm+l = [ 1 / ( m +  1 ) ] f dx Res¢ L m+l we get from (8) 

3L 
-½ ad*((VH,,+l)  + -(VHm+l)_)L=ad*((Lm)+)L, (17) 

Otm 

with (L ~)+ = Zj>~ o (SHin +l/~uj+~(x) )~J. We recognize in ( 17 ) the standard KP flow equation (2). The corre- 
sponding hamiltonian structure is found to be induced by the LP structure: {uj(x), uj(y)}Ro 
= I2}t_~°~_ 1 (u (x ) )  0 ( x -  y),  where the form on the RHS is given by [ 12,13 ] 

i+,[i+l\ J+' k[i+A k 
-- k U i + j + l - k w l ( X )  x+ k=O • ( - -1 )  k ) (18) 

for 1= 0. This LP bracket algebra is isomorphic to the centreless WI +oo algebra [ 14]. In conclusion we have 
found that KPt=o is the standard KP hierarchy. 
- KP~= ~: Here we first consider elements of (9~_* of the type L + = ~ + Uo + ~-  1 u 1, which preserve their form under 
6R,L+ =ad~, (X)L+, i.e. they span an Rl-orbit of  finite functional dimension 2. Calculation of the Poisson 
bracket according to (7), 

{<L+ IX>, <L+ I Y>}R,=- -<L+ I[X, Y]R,>,  (19) 

yields the R-brackets: { Uo (x),  u l (y)}R, = - 0 ' ( x - y )  and zero otherwise. We then define a complete Lax opera- 
tor defined as L ( x ) = L + + L_ = ~ + Uo + ~-  i u ~ + Y~ ~ 2~- ~v~ _ 2. Application of ( 19 ) gives a hamiltonian structure 
that is a direct sum of the matrix p(1) associated with the modes {Uo, u~} and the hamiltonian structure t2 ¢~) 
associated with {v~l i>~ 0} [ 131: 

(e(01) ff~0(1)), with e(1) ~-~-(g0 ; 0 )  . (20) 

Note that 12 (~) ( 18 ) corresponds to the centreless Woo algebra. 
- KP/=z: Here elements of if2. of the form L+ =~u_ 1+ Uo+~-lUl +~-Zu2, span an invariant subspace under 
8n, L+ =ad~ 2 (X)L+, i.e. they form an RE-orbit of  finite functional dimension 4. Defining the complete Lax 
operator L ~2) = L +  +L_ =~u_~ +Uo+~- lu~ +~-2Uz+ ~i>~3~--iwi--3 we find from eq. (19) the corresponding 
hamiltonian structure to be [ 13 ] 

0 0 0 - u _ ~ D + U ' l '  

( P o )  0 )  0 0 --u_ID u_,D2+u~ 
~(2) , wi thp(2)=  0 - D u _ ~  0 Dul ' 

--Du_l -u ' - i  -D2u_l -u~ uID u2D+Du2 

where p(2) and if2 (2) (18) are associated with {u_ 1, Uo, Ul, u2) and {w~l i >i 0}, respectively. The LP structure p(2) 
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is easily recognized as a semidirect product of the (centreless) Virasoro algebra generated by the spin-2 field u2 
with a subalgebra generated by the conformal fields { u_ t, Uo + OxU_ ~, u ~ } with spins - 1, 0, 1, respectively. Also, 
the LP structure with £2 ~2) (18) corresponds to the centreless algebra W~ 3 which is a subalgebra of Woo contain- 
ing all generators of spin t> 3. 

3. "Gauge" equivalence of modified KP hierarchies to ordinary KP 

3. I. Ordinary coadjoint action on R-coadjoint orbits as a generalized Miura transformation 

In this section we shall explicitly construct symplectic (hamiltonian) maps among the various R-coadjoint 
orbits O ( R ): O: O ( R ) --, O ( J~ ), where R, /?  = Ro, R 1, R2. The term"symplectic" ("hamiltonian") means that 
under the map O, the LP bracket structure on O(/~) is transformed into the LP bracket structure on O(R): 

{if1, Fz }~(~(L) ) = {P, (q~(L)), P2 (q)(L))}R, (21) 

where P~.2 are arbitrary functions on O(R) and we used notations L and/S= O(L) for the coordinates on O(R) 
and O (/~), respectively. As a consequence of (21 ), the infinite set of involutive integrals of motion {Hu[/S] } of 
the integrable system on O (/?) are transformed into those of the integrable system on O ( R ): Hu[L ] = H~v [ q~ (L) ]. 

To this end we observe that the ordinary coadjoint actions of the Lie algebra ff=W~¢(S ~ ) and the group 
G = ~PDO (S ~ ) on the dual space c#, = ~ ~(9" (S ~ ) do not commute with any of the R-coadj oint actions ( 16 ), i.e. 
ad*( ) and Ad*( ) intertwine the orbits for different R-coadjoint actions. Thus, it is natural to look for the map 
q~:O(R)~O(/?) in the form 

/~- q~(L) = Ad* ( g ( L ) ) L ,  (22) 

where the group element g(L)~ WDO (S ~ ) depends in general on the point L in O (R) = W ~tP*(S ~ ). 
It is in the sense of eqs. (21 ) and (22) that the integrable systems on the orbits O (R) for different R-matrices 

are called "gauge" equivalent. Also, from the point of view of eq. (21), i.e. mapping of one Poisson bracket 
structure of an integrable model into another one, the specific form of the q~DO(S I ) group coadjoint action 
(22), mapping O (R) into O (/~), may be called a generalized Miura transformation. 

Let us note the following important property of Ad*(g(L) ) in (22). It does not preserve the dual projections 
P_,  P_ on O(R) and O(/?), respectively: P%Ad*(g(L) )P*__ #0. 

It is sufficient to prove the "gauge" equivalence for linear functions on O (/?), namely 

{ (/SI.~), (/~1Y)}~ I£=Ad,~g¢L))z.={(Ad*(g(L) )LI.~), (Ad*(g(L))L[  Y)}R. (23) 

Applying the general formula (6) to the RHS of (23) we have 

{ ( ~ ( L )  I.~), ( ~ ( L )  I Y) }R = - (LI [VL ( ~ ( L )  I.~), VL ( ~ ( L )  I Y) ]R ) ,  (24) 

with 

(~g(~) (~' Y) g-re(L) (~, y)~. Vz ( ~ ( L )  1.~> = [g-~(L).~g(L) ] (~, x) - ~ dy Res¢ \. ~---~-f~ (~, y) [.~, t~(L) ] ] 

3.2. "Gauge" transformation of  KPl= 1 to ordinary KP 

Let us first specialize eq. (22) to the case q~: O (R) --O(KPt= t ) ~ O  (/~) ---- O (KPt=o), i.e. 

I--~'~'~ k= ~1 ~-kftk(X)=Ad*(g°(L ) ) (  ~+u°(x)+~-~ul(x)+ k=2 ~ ~--kuk--2(X)) " (25) 
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The "gauge" subgroup is easily found to be the abelian group of multiplication operators, 

go(L) =exp[Oo(X) ], 0x¢o(X) =Uo(X) , (26) 

by using the simple formula 

exp [0o(X) ]¢exp[ - ¢o(X) ] = ~ -  OxOo(X) • (27) 

Furthermore, from the structure of L (25), we find that only the ( + ) parts of.~ and 17contribute in (24), i.e. 
.~-.~>oe fqt+=o (13). Finally, forg(L)  =go(L) (26), we have 

8go(L) ((, y) gffl (L) 
~L(~, x) (~' y) = - ½~(x-y)~- (28) 

Now specializing eq. (24) by taking into account eqs. (25)-(28 ) and the form of the R-commutator ( 15 ) for 
l = 1, we obtain for/~--- exp ( 00 ) L exp ( - ¢~o ) 

( ( L I X ) ,  (El Y) }~,.~ = - (/71 exp(~o) { [ [exp( - 0o)Xexp(¢~o) ] ~> ~, [exp(-¢~o) Yexp(0o)]  ;~1 ] 

- [A1 (0o,/S) (£) ,  AI (0o,/~) (Y) ]} exp( -~o)  ) , (29) 

whereA~ (0o, E) (J?) - [exp( - Oo)£exp (~o) ] (o) + (0x I Res¢[£,/_~] )~- 1 and the subscript (0) means taking the 
zeroth order part of the l-expansion of the corresponding symbol. Note that in any term on the RHS of (29) of 
the form (/SIZ),  only the projection ~ _ 2 contributes. Using the simple identity 

exp (¢o) [ [exp( -~o)-~ exp (~o) ] ~>~, [exp(-Oo) Y exp (00) ] ~ ] exp(-~o)  

= [.~, ~] - [ [exp(-Oo).~exp(Oo) ](o), ~] - [-~, [exp(-~o)  Yexp(¢o) ](o)] (30) 

to rewrite the first commutator on the RHS of (29), we easily find that the contribution of the terms in the 
second commutator on the RHS of (29) are precisely cancelled by the second and the third terms on the RHS 
of (30). Thus, (29) reduces to the form 

{ ( / ~ ( L ) I £ ) ,  (/~(L) I Y) }i~.~ = - (LI [X, Y] ) = { (LIJ~),  (/~1 Y) }m,, (31) 

which establishes the "gauge" equivalence of KPI= ~ and KP, i.e. that the generalized Miura-like transformation 
(25 ), (26) maps the Poisson bracket structure of KP into that of KPt= 1 and vice versa. 

3.3. "'Gauge" transformation of KP~= 2 to ordinary KP 

It is simpler to first establish the "gauge" equivalence between the modified KP hierarchies KPt=2 and KPt= 1. 
The desired result follows by combining the results of this and the previous subsections. 

Specializing eq. (22) to the case ~: O (R) - O (KPt= 2 ) --} O (R )  ~-~ O (KP  l= l ), we have 

/~---~+ffo(X)'{-~--Iffl(X) + ~ ~--kvk--2(X) 
k=2 

=Ad*(gl (L ) )(  ~u- l (X) + uO(X) + ~-Iul (X) + ~-2u2('X) + k=3 ~' ~-kWk-3 (X)) " (32) 

Here we find the "gauge" subgroup to be the (centreless) Virasoro group 

gl (L) = exp [ ~l (x)~] , (33) 

u_,(F,,(X) )=O~F~,(X), withF,,(x)=-exp[Ol(X)O~]x. (34) 

In (34) F,, (x) denotes the global group Virasoro diffeomorphism generated by the Virasoro algebra element 
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O~(x)~O~(X)Ox. Note that all exponents involving symbols are operator ones. To obtain (32)we use the sim- 
ple formulas 

exp [gh (x)~] ~ exp [ - 01 (x)~] ----- 

OxF~I(X) ~, exp[fbl(X)~]u(x) exp[ -0~(x)~ l=u(F0 , (x ) )  . 

In the present case the analogue of (28) reads 

(35) 

6g~ (L) (~, y) 1 
8L(~,x) g?- l (L)(~ ,y)=-½e(x-F¢, (y) )  U'm(X) ~-2~. (36) 

Specializing formula (24) yields for E=  exp (0~)L  exp ( - ¢~):  

{ (£1 £7 ,  (£1 17) }v.P,.2 = - (£1 exp (O, ~){ [ [exp( -01 ~)-~ exp (Ol ~) ] >t2, [exp( -~01~ ) 7exp(0,~) ] ~2 ] 

- [ (a2 (¢,,/2) (.~))~1, (A2 (~ , /2 )  (Y) ) .<1 ]} e x p ( - ~ )  ) ,  (37) 

where A2(¢t,/2) ( 2 ) = e x p ( - 0 , ~ ) { £ +  (02 ~ [.~, E](_2))~ -2} exp(01~). Similarly to what happens in (29), in 
any term of the form (LI Z)  on the RHS of (37), only the projection 2> 1-2 contributes. The subscript ( -  2) 
means taking the coefficient in front of ~-2 in the corresponding symbol expansion. 

Noting that Ad (g i- ~ (L) ) preserves the splitting 2~= )7>. t + )7< o corresponding to KPt= ~ ( 13 ), one can rewrite 
(37) as 

{ ( /2(L)IX) ,  (ff.(L)l~)}r.P,.2 = - (/2(L) I [P~ ~, Y>~ ] -  [£.<o, 17.<o] ) (38) 

+ (/2(L) I IX+ (021 [JT,/2] (-2))~-2, exp (01 ~){ [exp(-¢1~) 17exp(¢~) ] (1)~} e x p ( - ¢ ~ )  ] ) (39) 

- (E(L) l [17+(O2~[f ,  El(-2))~-2, exp(¢l~){[exp(-¢~)Xexp(f~,~)l(~)~}exp(-fh~)])  . (40) 

Now, accounting for the structure of/2(L) (32), one can easily show that both terms (39) and (40) vanish 
separately. Thus, we are left with (38) only, i.e., 

{ ( E ( L ) 1 £ ) ,  (/2(L)I 17)}~p,.~ ={</21)75, (/21 17) }KP,=I , (41) 

which establishes the "gauge" equivalence of KP~= 2 and KPt= l, and because of (31 ), also the "gauge" equiva- 
lence of KP~=2 to ordinary KP. 

4. Appl i ca t ions .  A new four-boson representat ion  o f  W 1+ 

4.1. Lenard relations 

As mentioned in section 2.1 above, Lenard relations shown below eq. (4) played an important role in estab- 
lishing the bi-hamiltonian structure for the ordinary KP hierarchy. Here we comment on how the "gauge" equiv- 
alence between the various KP hierarchies carries the Lenard relations over to the modified KP hierarchies. 
First we note that Tr /~"=TrL  n, with L being a Lax operator in the modified KP hierarchy (notations as in 
(2 5 ), (32) ), follows from the "gauge" equivalence and ensures that the hamiltonians H,  remain identical for 
all KPt (upon extending H, as functions from orbits O (R) to the whole dual space f¢~). For simplicity we now 
discuss the case of KPz= l with the Lax operator L related through L___ exp (¢o) L exp ( - g~o ) to the Lax E of usual 
KP hierarchy. One can easily show that the ordinary Lenard relations {H,,/S}2 = {Hn+ ~,/2} 1 translate now to the 
new Lenard relations 

{H,+,, L}, + [{Hn+,, 0o},, L] ={H,,  L}2 + [{H,, 00}2, L ] .  (42) 
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E specially for the two-boson R 1-orbit L + = ~ + Uo + ~-  1Ul we get the relations { H,, u~} 2 = { n n  + 1, Ui} 1, with i = 0, 
1, reproducing the second bracket structure found in refs. [ 13,24 ]. 

4.2. New representations of  W-algebras 

Here we will use the symplectic "gauge" equivalence map to construct a new representation of the W~ +o~ 
algebra. Let us first recall eq. (25) and solve for the coefficients of the Lax operator on the LHS in terms of the 
coefficients given on the RHS of this equation. One easily finds 

fk+l=UlPk(Uo)+ ~ Vn-2Pk+l-n(Uo), k>~O (43) 
n=2 n 1 

where Pk(Uo) -- (0+ Uo) k" 1, are the so-called Fa~i di Bruno polynomials and the fields on the RHS satisfy the LP 
bracket structure described in (20). As a corollary of the symplectic character of the "gauge" transformation, 
we conclude that Uk+, (43) satisfy the Poisson-bracket W~ +o~ algebra described by the form Oto~ from (18) 
(note that the index labelling Uk+I is precisely equal to its conformal spin). Specifically, putting in (43) all vi to 
zero, we recover the two-boson representation Uk+I = UIPk(Uo) of the WI +oo algebra described in refs. [ 13,24 ] 
(see also ref. [25 ] for another related two-boson representation). The semiclassical limit is simply obtained by 
taking Pk (Uo) --~ U k in (43) and yields the generators of the wt + o~ algebra. 

Similar considerations applied to KP~= E result in a new non-standard four-boson representation of the W~ +oo 
algebra. Indeed, performing a "gauge" transformation consisting of a composition of (25) and (32) on the four- 
boson RE-orbit L+ = ~u_ 1 + Uo + ~- 1ul + ~-EUE with ~1 as in (34) and 0xOo (x) = (Uo + 0u_ 1 ) (F~, (x ) ) ,  we obtain 
the following KP L operator: 

E=exp(¢o)  exp(q~l~)(~u_l +Uo+~-lul  +~-2u2) exp(-q~l~) e x p ( - ¢ o ) = ~ +  ~ ~-kUk, (44) 
k ~  l 

Uk+ 1 =-- fh Pk( fo) + ftzQk--1( riO, to) , (45) 

using the notations 

rio(X) - (Uo + 0u_l ) (F~ (x) ) ,  rio(X) -= 0~ In (0~F~) , (46) 

f~l (x)  - OxFo, u~ (Fo, (x)  ), fiE(X) - (OxFo,)Eu2(F~, (X)) ,  (47) 

k 

Qk(fio, Z3o)- ~ (0x+fio+r0)k-~(0x+fio)~'l  (k~>0). (48) 
smO 

Again, because of the symplectic property of the "gauge" transformation (44), the fields Uk (45) span a W~ +~o 
LP bracket algebra realized in terms of the four-boson fields (46) and (47). The poisson-bracket algebra of the 
latter, 

{ a l ( x ) , a o ( y ) } = - O x ~ ( X - y ) ,  

{fiE(X), fo (y )}=  - - ro (X)Ox~(X- -y )+O~(x - - y ) ,  

{fiE(X), rE(y)}= --2fi2(X)Ox~(X--y)--OxfE~(X--y), 

(49) 

(50) 

(51) 

the rest being zero, is a direct sum of the Heisenberg algebra of (fo, f l ) with the conformal algebra of spin-2 and 
non-primary spin-1 fields (rE, Vo). Let us point out that the deformation of the conformal algebra (50), (51) 
with { Vo (x),  Vo (Y) } = - c O ~ ( x -  y) already appeared in the construction [ 24 ] of the two-boson representation 
of the second bracket structure of KP, while the fields (fo, f l  ) comprise the usual two-boson content of the 
W1 +~ representation (the first term on the RHS of (43)) .  The above four-boson construction brings these two 
Bose structures together to yield a new representation (45) of the Wl +o~ algebra. 
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It is an  in te res t ing  p r o b l e m  to s tudy the  quan t i z a t i on  o f  the  in tegrable  sys tem cor respond ing  to the  four -boson  

rea l iza t ion  o f K P  (quan t i z a t i on  o f  the  two-boson  rea l iza t ion  o f  K P  has a l ready been  unde r t aken  in ref. [26]  ). 
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